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Abstract

Frictional sliding on a crack with non-uniform frictional characteristics is considered. The present work continues
the investigation of Gorbatikh et al. [Int. J. Solids Struct., in press] and focuses on the cyclic loading. The evolution of
the sliding process in loading-reloading—unloading cycles is analyzed. We also extend the analysis to the important case
when the frictional resistance changes in the process of sliding (such changes may model “degradation” of the sliding
surface during sliding, as well as other physical factors, not necessarily related to the sliding itself). © 2001 Published by
Elsevier Science Ltd.
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1. Introduction

The problem of a crack that has non-uniform frictional characteristics along it and undergoes partial,
gradually spreading, sliding under applied compression and shear is considered. This may model situations
with local changes of frictional resistance (due to local drops/elevations in normal stresses, local lubrica-
tions, etc.) that are relevant for a number of applications (like rotating machinery with frictional contacts).
They are particularly important for the geological fracture mechanics. Field observations and seismic data
indicate that the slip distributions along the geological faults are quite complex and non-uniform (Pollard
and Segall, 1980; Rudnicki and Kanamori, 1981; Cooke, 1997; Schultz, 1999). The analysis is also relevant
for the proper interpretation of experimental data on frictional sliding (Marone, 1998).

The present work continues the investigation of Gorbatikh et al. (in press) and focuses on cyclic loading.
It also extends the analysis to the important case when the frictional resistance changes in the process of
sliding (such changes may model “degradation” of the sliding surface during sliding, as well as other
physical factors, not necessarily related to the sliding itself). We study the hysteresis and the ‘“memory” of
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the stress history under loading cycles, the dependence of reverse sliding at “unloading” on the amount of
sliding accumulated during the previous stress cycle.

An important part of our analysis is that the crack may contain open (traction free) intervals. Such
intervals model the situations when some material “fell off’, so that contact between the crack faces is
partially lost.

As far as cyclic loading of a non-uniform contact is concerned, earlier works should be mentioned.
Weertman (1964) considered the case of one local minimum of frictional resistance in the simple form of a
symmetric, piecewise constant function, under the cyclic loading. His work addresses the propagation of
sliding but does not consider the distribution of slip (the displacement of discontinuity profile). Olsson
(1984) considered an interval of local minimum of frictional resistance in the form of a symmetric “tri-
angular” drop. He analyzed the propagation of sliding and the distribution of slip under the condition that
sliding has not spread beyond the mentioned interval. These two works do not cover the possibilities that
“open” (traction free) intervals may be present, or that the frictional resistance may change in the process
of sliding.

2. Formulation of the problem

The formulation of the problem of non-uniform sliding, given by Gorbatikh et al. (in press) for the
monotonic loading, is extended here for the cyclic loading paths. Thus, we consider an infinite two-
dimensional solid with a crack (—/,/) along the x-axis. Stresses at infinity (applied loads) are

Oy = O’;;(S) <0 and o, = Jij(s) (2.1)

where index S denotes a step of the loading history, according to the rule:

B {0,2,4,... if do2 > 0 (loading)

1,3,5,... if doy® <0 (unloading) (2.2)

Frictional resistance is assumed to be variable along the crack (a function of x) and, in general, also may
change during the sliding process (a function of S): t® = (8)(x). As a special case, it may be modeled by
Coulomb’s law ¥ (x) = —u®(x)a,, + ¥ (x) (Where p®(x) and ¢ (x) are the coefficients of friction and
cohesion, respectively), but our analysis is not restricted to this law.

The crack may experience four different regimes along its surface: intervals undergoing frictional sliding
L(IS), “locked” intervals L§S> without any previously accumulated sliding ([u,] = 0), open (traction free)
intervals L;‘” and intervals Lff) with “locked” accumulation of sliding ([u,] # 0) (schematically shown in
Fig. 1). We note that the first three regimes were introduced in the earlier analysis of Gorbatikh et al. (in
press) of the “monotonic” sliding, whereas the fourth regime, identified here, is due to the loading reversal.

The mentioned four regimes are defined by the following boundary conditions (brackets [ | denote
discontinuities of the corresponding quantities):

1. Along the set LES) of frictionally sliding intervals

(=1%o =19(x), [u]=0, [oy]=1[0,] =0 forxeL?® (2.3a)
subject to the inequality
o, <0 forxeL® (2.3b)

2. Along the set Lés) of locked intervals that have not experienced any previous sliding:

) =[] =0, [oy]=]0,]=0 forxeL (2.4a)
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Fig. 1. Crack line comprising a sliding interval LES) a “locked” interval without previous sliding Lgs), an “open’ interval Lgs) and an
interval Lf) with locked accumulation of sliding. Each of the intervals may actually consist of several subintervals.

subject to the inequalities
a, <0, (_1)3% <19(x) forxelL (2.4b)
3. Along the set L ) of open (traction free) intervals
0y =0,=0 forxelL? (2.5a)
The condition of non-overlapping of crack faces should also be imposed:
[u)) =0 forxe L(3s) (2.5b)
or, in a more general case of a certain finite initial crack opening 4(x) along Lgs),
A+ [u)] =0 (2.5¢)
4. Along the set Lf) of intervals where a certain accumulated slip is locked:
] =09 (x), [u]=0, [0,]=[0,]=0 forxeL} (2.6a)

(0% (x) is a slip distribution that has accumulated in the previous sliding along Lf;”), with the following
inequalities to be satisfied:

0, <0, (=%, <t(x) forxelL (2.6b)

The points that separate intervals of sliding L<1S) from the locked intervals L(ZS) and Lf) are determined from
the following condition for the stress intensity factor (SIF)

Ku=0 (2. 7)

(1ndeed Ky # 0 at the end point of L and L, ) would have generated a singularity of shear stress gy, in L
and L4 , thus producing sliding there) At the tips x = £/ of the crack, Eq. (2.7) should be replaced by
Ky < Kjie, where Kyjc is a material constant (we do not consider a further development of the sliding
process, when Ky exceeds Ky at the crack tips).

We now overview the general features of the sliding process in one loading cycle. The sliding process at
the first loading (S 0) starts at points of local minima of t”)(x) and then propagates along the crack, as
applied load ¢3;'” is increased. The crack experiences, generally, three regimes: sliding zones Lg , locked
zones L( ) and open intervals L

Let now the unloading process (S = 1) start at stress g, % where the first loading ended. At this point

=0, L Lm), Lgl) = 30 and L L(l ), with the locked accumulation of sliding [u,] = 6" (x) to be
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found from the solution of the problem for the preceding stage (S = 0). Reverse sliding starts when
—a,, = tW(x), where tV(x) is the profile of frictional resistance during unloading. We assume that, gen-
erally, profiles " (x) and ¥ (x) do not coincide, i.e. that the proﬁle may be affected by sliding (* surface
degradation”). If local minimums of 7(!)(x) coincide with the ones of () (x), the reverse sliding zones L are
contalned within L4 intervals; they propagate as the unloading progresses, whereas the locked 1ntervals L
and L shrink.

Let now the reloading process start at axy (S 2). At thls pomt L =0, L L(1>, L(f) = Lgl) and
Lf) L UL with the locked accumulation of sliding [u,] = 6 g x), to be found from the solution of the
problem for the preceding stage (S = 1). New sliding zones L nucleate when g, = t®(x) and then
propagate as ny( ) is increased.

Generally, at the point of reversal of the loading direction (S — 1 — §) the following conditions hold:

$) _ 0, L(ZS) _ L(ZS—1)7 LgS) :LgS—1)7 Lf) _ L(IS—l) ULA(‘S—I) (2.8)
(5-1) (s—1)
(s) _Jo (x), xel,
07 (x) = { ), xe B (2.9)

3. General solution in absence of open intervals

We first consider the case when there are no “open” (traction free) intervals L and the crack line
comprlses interval(s) L of frictional sliding, possibly alternating with locked 1nterval(s) L and intervals
L( with locked accumulatlon of sliding from the preceding loading stage.

Following the usual formalism of two-dimensional elasticity, the solution is sought in terms of Kolosov—
Muskhelishvili’s potentials:

2G(u, +iuy) = k®(z) — B(Z) — (z —2)P'(2) (3.1a)

0y — 0, = O(2) + BE) + (z - )P (2) (3.1b)

where G is the shear modulus, x = 3 — 4v for plane strain and x = (3 — v)/(1 4+ v) for plane stress (v is
P01sson S ratlo) and functions ®(z), @(z), defined by the relation ®(z) = ®(z), are piecewise analytic, with
1 ), and L being the discontinuity lines.
Using Eq (3.1a), we obtain the following boundary condition on L

26(uf —u) = (k4 1)(P" (x) — & (x)) = 2G5 (%) (3.2a)
or
O (x) — & (x) = %jfx) xelLd (3.2b)

According to Eq. (3.1b) a,, = i(®*(x) + & (x)) and boundary condition (2.3a) can be restated in terms of
&(z) as follows:

Ot (x)+ & (x) = (=1 )i, xeLl (3.3)

Thus, we have Riemann’s problem (3.2a), (3.2b) and (3.3) for function @(z), with conditions at infinity that
follow from Eq. (2.1).

We represent the problem as a superposition of two subproblems (Fig. 2). Subproblem (A) coincides
with the problem (AA) considered at the preceding loading stage and its solution is assumed to be known.
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Fig. 2. Stress superposition for a crack comprising intervals L(g 2 ) and Lm

Subproblem (B), where slip along L§S> is zero, was discussed in detail by Gorbatikh et al. (in press); it is
briefly overviewed in the text to follow.

Assuming that, in the general case, the sliding zone L ) comprises n shdmg subintervals L ), with yet
unknown endpoints af( ), (alternatmg with locked submtervals of L ) we have the followmg expression
for the complex potentlal <I>( ) (see for example, Muskhelishvili (1953))

X(t)oy,(t .P,(2)
3.4
27‘EX / t—z + X (2) (34)
where
X == a®) = b~ al?) (e - b)) (3.5)

with the branch chosen in such a way that z7"X(z) — 1 as z — oo (hence X*(t) = X(¢) and X (r) = —X(¢)
on Lf), where ¢ is the coordinate along x-axis),

oy =0 —ay, X5 ()P (O (x) + SV () (3.6)
and where P,(z) is a polynomial of degree <n:
Pn(z) = COZn+CIZn71 ++Cn (37)

with real coefficients to be found from n conditions of uniqueness of displacements at points a,(f) and b,@

jéw B(z)dz=0, (k=1,...,n) (3.8)
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where A(S)(k) are closed contours encircling L<S>(k> The SIFs entering the condition (2.7) and forming 2n
equations for finding unknown endpoints a,(fs), b,((S) are calculated in the usual way (for example,
Ku(by) = lim (z — bi) 2 (2)).

Thus, we‘reduced the original problem to two subproblems (A) and (B), where the solution of sub-
problem (A) is known from the previous stage and the solution of subproblem (B) can be found by the
method described above.

4. Analysis in absence of open intervals

We consider the case of piecewise constant distribution of the frictional resistance t** (x) with one local
minimum:

(8)

7,7, a<x<b
W) =0, b<x<i (4.1)
Tgs>, —l<x<a

where r§ )< r; )< ‘c; Using this case, as well as the modified profile (4.3), we examine the typical features
of the sliding process under cyclic loading.

4.1. Propagation of sliding and slip accumulation

The problem of propagation of the sliding zone (in terms of applied loads) can, in this case, be solved in
elementary functions. We consider one loading cycle.

Loading from the initial state ¢2°'" = 0 to a certain a (S 0). The entire crack is locked until the
applied load reaches a critical level 67" = 7(1 >, at which pomt sliding occurs in the entire interval a < x < b
of lowest frlctlonal resistance. As o7y ) is increased, sliding propagates into adjacent intervals (@ — sg ), a)

and (b,b+ 92 )). Equating

P
1I b+£go)
(0)

to zero yields the following two equations for the endpoints &, and sgw:

e Tt T Cs(l=m)—1 -1 Cs(l4 o) =20, — 1
oy = -~ arcsin 5 - arcsin 5
2 /s S(1+O(2) —1 /e S(1+O(2) —1
o3 = S0l + 8§ — 1 (42)
where s = ((13 — 711)/(72 — rl))z, = (b—a)g ! and 1, = 7:5(0), & = s,((o), Ty = = ¢, Numerical solution of

Eq. (4.2) is illustrated in Fig. 3a and the correspondmg slip distribution is shown in Fig. 4a.

Unloading from the state o) = y( ) to (7 (S = 1). No sliding occurs until the applied shear load
oo(Oj

drops to the level o} = o, ( '(x) + 7:1 ( )) at which point the reverse sliding occurs within (a b)

As o)) ) is further decreased the reverse sliding propagates into adjacent 1ntervals (a — 83 ,a), (b,b+ 8 ).

The endpomts sg and 8 can be found from Eq. (4.2) by setting 7; = rk ) 4 rk , & = 8,(t) and o) =

a;’;fo) - ‘7)@ . Intervals (a sg()), a— sgw) and (b + 8(21>, b+ 3(20>) remain locked, with the amount of slip ac-
cumulated during the previous stage. Figs. 3b and 4b illustrate propagation of the reverse sliding zone and
of the slip distribution, respectively. Note that, at the point when the system is unloaded (a;’;(l) =0)a
certain amount of residual slip still remains, although it is somewhat reduced (Fig. 4b, dotted line). Further

reduction in the applied loads (resulting in negative a)f;(”) leads to expansion of the zone of reverse sliding
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35 -1 025025 1 x/f
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Fig. 3. The case of piecewise constant frictional resistance. Propagation of the sliding zones in the loading (a), unloading (b) and
reloading (c) phases.

(a— &, b+¢), until it reaches the ends of the interval (a — ", b + £{). An important observation is
that, when the magnitude of the negative stress a;’;(“ reaches the level of the peak stress in the loading part
of the cycle, the slip accumulated in the mentioned part is fully eliminated (as seen from the fact that the
lowest curve of Fig. 4b is a mirror reflection of the upper curve). Thus, at this point, the “memory” of the
previous loading stage is fully erased.

Reloading from the state o =g, >0 to [ () — =0, % (S =2). The entire crack remains locked until
ajjj(z) =0, > 4 ( '(x) + 7:1 (x )) When this stress level i 1s reached a new shdrng zone nucleates within (a, b)
and, as ¢ y( )is 1ncreased it spreads into adjacent intervals (a — sg ), a), (b,b+ 82 ) where endpomts 552) and
8(3) can be found from Eq. (4.2) by setting 7, = r,iz) + r,((l), g =¢ and o = o-fj; 2) axy . The intervals
with locked (reverse) slip shrink and, at some point, fully disappear (Figs. 3c and 4c).

It is seen that the evolution of the sliding process during reloading is strongly affected by previous
loading history (note the difference in the slip distributions (Fig. 5) corresponding to two states at

) /7, = 3.0 in reloading phase: first—after unloadlng to negative stress ;) /7, = —3.5 (the dotted line
of Fig. 3c) and second—after unloading to o7) /) = 0).

At the end of the cycle (when the peak stress of the first loading stage a >0 s reached), the “memory” of
the loading history is fully erased: the upper curves of Fig. 4a and ¢ c01nc1de (this phenomenon was called
“discrete memory”’ by Holcomb (1981)). It is important to note that the conclusions drawn from Figs. 3
and 4 apply only to the case when the properties of the system (the profile of the frictional resistance)

remain unchanged during the entire cycle (for example, there is no “surface degradation”).



96 L. Gorbatikh et al. | International Journal of Solids and Structures 39 (2002) 89—-104

'y

35 (a)

0.8

7(x)/7
4

ol U

-1 -0.25

Loading

x/!
1

(b)

Unloading

x/l
1

()
Reloading

x/0
-1 0 1

Fig. 4. The case of piecewise constant frictional resistance. Slip distribution in the loading (a), unloading (b) and reloading (c) phases.
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Fig. 5. Stress history dependence of the slip distribution. Dotted and solid lines correspond to the cases when reloading starts at
o/t =0 and o3 /11 = —3.5, correspondingly.

4.2. Influence of changes in the frictional resistance during sliding on the stress—slip behavior

We now consider a more general situation when the profile of the frictional resistance changes during the
cycle. Such change may reflect evolution of the sliding surface—slip “weakening” or slip “hardening” (for
example, loss of a lubricant in machinery), or changes that are not necessarily related to sliding.

Fig. 6a illustrates the case when the frictional resistance remains unchanged during unloading, but
decreases/increases during the reloading part of the cycle (the solid line corresponds to the case of no
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Fig. 6. Impact of changes in the frictional resistance during sliding on the stress—slip behavior of the system; in the reloading (a) and
unloading (b) phases of the cycle.

changes). It is seen that the return to the level of the sliding displacement reached during the first loading
occurs at decreased/increased levels of the applied load. It appears that this phenomenon has been observed
experimentally; see, for example, the data of Olsson (1990).

Fig. 6b illustrates the case when the frictional resistance changes during the unloading part of the cycle,
but returns back to the original profile during the reloading part. In contrast with the previous case, the
stress—slip loop is fully closed (this implies that the response of the system to a certain subsequent loading
will not be affected by the preceding cycle).

4.3. Sensitivity of the stress—slip curves to the profile of frictional resistance

Sensitivity of the sliding process to the profile of frictional resistance (under monotonic loading) was
analyzed in detail by Gorbatikh et al. (in press). We now examine how the shape of local minimum of
frictional resistance t*)(x) affects the shape of the hysteresis in the stress—slip coordinates (under cyclic
loading). This analysis is important for modeling and predicting behavior of different types of systems with
observed non-linear responses to the cyclic loading (for example, rock behavior). The assumption of
uniform Coulomb’s friction that is used mostly in these cases often does not agree with the experimental
observations (Olsson, 1984).

Example. A drop of frictional resistance within a certain interval has the triangular shape. We first solve this
problem and then compare the results with the case of the step function, with the drop equal to the average
value of the triangular profile (Fig. 7a).
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Fig. 7. Sensitivity of the overall slip to the exact profile of frictional resistance in the case of local minimum (triangular minimum is
replaced by a stepwise drop having the same average).

Applying the method developed above we obtain the following relations between the applied shear load
) and the length of the sliding zone 2¢), in the case of the triangular shape:

o0
ny — T &

s

= =—, ¢<ua 4.3

2 Ty — Tq1 a ( )

no, —T ¢ & a

-2~ =——y/>—1l—arcsin—, ¢>a 4.4

2 Ty — T1 a a? & ( )
where &= ¢, r, =" oy = o3 for the loading part of the Cycle a =0, 7, =7 4,
oy =0, o® _ oV for the unloadlng part of the cycle; and & = &, 7, = 1" + 1}, oy = o, @ _ o) for

the reloadlng phase. Formula (4.3) was derived earlier by Olsson (1984). Flg 70 illustrates the stress—slip
curves for this case (solid line) and for the case when the triangle is replaced by its average value taken over
the interval of local minimum of t*)(x). It is seen that the curves almost coincide after the interval of
reduced frictional resistance has been already slid. Thus, the “memory” of the interval of reduced 7 is
retained, essentially, in terms of the average drop only.

5. General solution in the presence of open intervals

We now extend the analysis to the case when open intervals (collectively denoted by L )} are present. By
open intervals we mean the intervals (of given, fixed length) where tractions are equal to zero. They model
situations where a part of a material has been lost (“fell off”’) along a certain part of the crack. We em-
phasize that such traction free intervals are not caused by any system of “prying loads’ (as in the work of
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Fig. 8. Stress superposition in presence of open interval L; (superscript S is omitted since the superposition holds at any loading step).

Comninou and Dundurs, 1979), but are fixed. In this section Coulomb’s law %) (x) = —u®)(x)a') (x) +
¢ (x) is assumed along the sliding intervals L\*. '
Using the stress superposition of Fig. 8, we reduce the problem to two subproblems (A) and (B).
Subproblem (A) involves mode I loading only, and traction ¢* along interval L, is given by the solution of
the problem of an open interval under remote compression ¢} (and hence may have a singularity if the
open interval has sharp tips). Subproblem (B) involves mode II only and can be solved by the method
developed by Gorbatikh et al. (in press), briefly overviewed in Section 3. Indeed, reformulating the
boundary conditions in terms of function @(z), we have the following formulation of subproblem (B):

O (x) + & (x) = (-1 (,u(s)(x)ag(s) (x) — (x))i7 xeL® (5.1)
Ot (x)+ P (x) =0, xelL (5.2)
O (x) — & (x) = %jl(’“) el (5.3)

that is similar to Eqgs. (3.2a), (3.2b) and (3.3).

We note that the normal traction distribution ¢**) depends on whether the endpoint of the open in-
tervals is “sharp” or “blunted”. We assume, in the analysis to follow, that the mentioned endpoints are
crack tip-like, so that ¢*®) involves a singularity generated at the tip of the open interval by the compressive
loading (otherwise, ¢*®) has to be readjusted, in accordance with solutions for stress fields near slender
notches).

We also note, that since ¢ enters the analysis only via product u®)(x)c”®®), the singularity at the
endpoints of the open interval can, formally, be attributed to u'S(x)—these two physically different
problems are mathematically identical. Thus, the problem with an open intervals can be reduced to the one
considered in the preceding sections, with singular u(®(x).

6. Analysis in presence of an open interval

We now analyze the sliding process in the case of one open interval (—a, a); the analysis can be extended
to the case of several open intervals in a straightforward manner. Coulomb’s law with cohesion coefficient
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c =0 is assumed. We assume that the coefficient of friction—function u'®)(x)—may change during the
loading—unloading cycle.
Thus, sliding starts at a certain point x if the following condition is satisfied there:
(=108 (x) = i ()l () (6.1)

xy w

Stresses ¢%) and ¢} can be taken as induced by an isolated crack with sharp tips (occupying the open
interval), loaded by ¢! and ¢{§, and evaluated along the interval where the frictional sliding will take
place. They are, thus, given by:

o5 okl 55 _ 7y 1] (6.2)

o= ¥ x2 — a2

Substituting Eq. (6.2) into Eq. (6.1) leads to cancellation of singular multipliers at the normal and shear
terms, so that the condition of nucleation of sliding is re-stated simply as (—1)°6) = 1 (x)o%(5). This
condition coincides with the one in absence of the open interval. Therefore, the presence of an open interval
produces no effect on the initiation of sliding (although it does affect the propagation of sliding, as discussed
below). This physically interesting observation applies to the case of several open intervals as well.

We now analyze the case when frictional coefficient S (x) is piecewise constant on the left and on the
right of the open interval (Fig. 9a); in this case the solution can be obtained in closed form and in ele-
mentary functions. Cases of other functions xS (x) can be analyzed by the same method. We consider now
the loading (S = 0)-unloading (S = 1)-reloading (S = 2) cycle.

Loading from the initial state 6°(*) = 0 to a certain a;;fo). Intervals (—¢, —a) and (a, ¢) are locked until the
applied shear load reaches 035" = u§°>a;;<°>. At this point sliding takes place along the intervals with lowest

u(x)/ (a)
2

he— 1 —
X
—/ b a | a2 b ¢
Oy T, (b)

1

N
AT — |
X
4 b -a 0 a b /

Fig. 9. Frictional coefficient and “driving force™ entering Kj; in presence of open interval LgS).
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frictional resistance (—b, —a) and (a,b). As oij“” is increased, sliding propagates into adjacent intervals
(—h'9, —b) and (b, ")), where 1? is to be determined. As follows from the superposition of Fig. 8, this
problem reduces to the one with one sliding zone (—A", 2V, with the following traction distribution (Fig.
9b):

a;;(o), x| < a
Oy = o0 (0) 6.3
Xy 0 (0) + 'u(o) (x) ‘5;*2752\7 |x| >a ( )

The endpoints +4® are found from the condition that

+1/2
Ku(£h) = ,// {H} dx

are equal to zero. This yields the following equation for /:

b — a? T T~ Oy
———+b?, where Q=- —-—2%
tan2 Q ’ Q 2 Ty — T

(6.4)

with / set equal to A at this stage of loading and 7, = 4" 6>, 7, = u;‘”a;;(o), o = oyl
Figs. 10a and 11a illustrate propagation of the sliding zones and the corresponding distribution of slip
(the displacement discontinuity) along the crack. Note that the displacement discontinuity has the elliptical

profile in the open interval.

o+ =177

7(x)/71)2 Loading A

05- | T L |1 /0 0
0 0204 . x/4
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Fig. 10. Propagation of the sliding zones in the loading (a), unloading (b) and reloading (c) phases when one open interval is present.
The case of piecewise constant frictional coefficient.
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0
02l © x/t
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Fig. 11. Slip distribution in the loading (a), unloading (b) and reloading (c) phases when one open interval is present. The case of
piecewise constant frictional coefficient.

Unloading from the state ¢ y( ) = (y) to o'l y *. Reverse sliding is preceded by a “deadband”—an interval
of loads where no sliding occurs; within this interval the dlsplacement discontinuity over the open interval
decreases proportionally to the magnitude of applied load axy ) (Fig. 11b). The reverse sliding starts when
the applied shear load drops to the level o3(") = g{0)* — (" +7”) (where 7" = pﬁl)a;j“) and 7\ =

uﬁ())o;;(o)) and takes place within (—b, —a) and (a,b). As o33V is further decreased, the reverse sliding

propagates into adjacent intervals (=W, b) (b A ) where AV can be found from Eq. (6.4) by setting
h=h, o = "o 4 o), —,ﬁ 6@ + oM and o3 = 63" — (. Figs. 10b and 11b il-
lustrate the propagatlon of the reverse shd1ng zone and of the s11p d1str1butlon respectlvely

Reloading from the state a( to the previous peak load ¢\”*. The intervals adjacent to the open in-

terval remain locked until o33 = ¢{)* + (1 @) + M (x)) (where ol = )o <) and 1\ = o ). At

xy

this point a new sliding zone nucleates within (a, ). As oy ) is 1ncreased thrs zone spreads into adjacent

intervals (— ), —b), (b,h?), Where h?» can be found from Eq (6.4) by setting h=h?, 1, =
't o 24! a o) g, =y o + u 0”(1 and o3y ax‘,f()) — oV, The intervals with the locked accu-
mulated reverse shp shrink and at some point, fully disappear (Flgs 10c and 11c); at this point, the
memory of the preceding loading step is erased.

A comparison with the case when the open interval is absent shows that the open interval hinders the
propagation of sliding. This is explained by the fact that the compressive stress has a singularity at the

endpoints of the open interval whereas the shear stress does not.
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Fig. 12. Stress-slip curves in presence of an open interval (of different lengths). The curve when the open interval is absent is given for
comparison.

The influence of the open interval is further illustrated by Fig. 12, where open intervals of two lengths are
considered. An interesting observation is that, although the propagation of sliding is hindered by the
singularity in g,, at the tips of the open interval, the total accumulated slip ffh [u(x)]dx is larger in the
presence of the open interval.

Remark. Although Figs. 10 and 11 illustrate the case simplest when u®(x) does not change during the
sliding process, the solution given above does take such changes into account.

7. Discussion and conclusions

Frictional sliding under cyclic loading on a crack with non-uniform frictional characteristics (that may
undergo changes in the process of sliding) is analyzed. The contact surface may include “open’ intervals of
zero tractions that model the situations when some material “fell off”” from the sliding zone. The evolution
of the sliding zone in the process of stress cycling is analyzed. The basic findings can be summarized as
follows.

It is found that the evolution of the sliding process is strongly affected by the preceding loading history.
On completion of the stress cycle, the “memory” of the loading history is fully erased (provided the
properties of the system—the profile of the frictional resistance—remain unchanged during the cycle).

We examined the impact of changes of the frictional resistance profile 7(x) in the process of sliding. Such
changes may model, for instance, the “degradation” of the sliding contact in the process of sliding, or some
other processes that are not necessarily related to sliding. One of the effects of the mentioned changes is that
the hysteresis loop in cyclic loading may not close. This phenomenon appears to have been observed ex-
perimentally.
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We analyzed the sensitivity of the stress—slip curves to the exact profile of the frictional resistance along
the crack (this is of importance since the profile is usually not known in exact terms). The analysis is done
on the example of a local minimum of the frictional resistance. It is found that, after the zone of the local
minimum has been fully slid, the process of further sliding becomes almost insensitive to the exact shape of
the minimum. A similar observation holds for the unloading process.

The effect of “open’ intervals along the crack surface is analyzed. Physically interesting findings are that
the onset of sliding is not affected by “open’ intervals; after sliding started, their presence, on one hand,
increases the overall accumulated slip, on the other hand, “open” intervals, hinder the propagation of
sliding.

We note that, similarly to the earlier analysis of Gorbatikh et al. (in press), the results of this work can be
extended to the case when the “open’ intervals are replaced by intervals with a certain prescribed traction
distribution. Such a generalization may be relevant to situations involving, for example, fluid pressures
along the crack.

Acknowledgements

This work has been supported by NSF and DOE through grants to Tufts University. The first author
(LG) acknowledges support of Zonta International Amelia Earhart Fellowship Award.

References

Comninou, M., Dundurs, J., 1979. An example for frictional slip progressing into a contact zone of a crack. Engineering Fracture
Mechanics 12, 191-197.

Cooke, M., 1997. Fracture localization along faults with spatially varying friction. Journal of Geophysical Research 102 (B10), 22425-
22434,

Gorbatikh, L., Nuller, B., Kachanov, M., 2001. Sliding on cracks with non-uniform frictional characteristics. International Journal of
Solids and Structures 38 (42-43), 7501-7524.

Holcomb, D., 1981. Memory, relaxation, and microfracturing in dilatant rock. Journal of Geophysical Research 86 (B7), 6235-6348.

Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth Planetary
Science 26, 643-696.

Muskhelishvili, N.I., 1953. Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff, Groningen-Holland.

Olsson, W., 1984. A dislocation model of the stress history dependence of frictional slip. Journal of Geophysical Research 89 (B11),
9271-9280.

Olsson, W., 1990. The effects of shear and normal stress paths on rock friction. In: Barton, N., Stephansson, O. (Eds.), Proceedings of
the International Symposium on Rock Joints. A.A. Balkema, Rotterdam, pp. 475-479.

Pollard, D., Segall, P., 1980. Mechanics of discontinuous faults. Journal of Geophysical Research 85 (NBS), 4337-4350.

Rudnicki, J., Kanamori, H., 1981. Effects of fault interaction on moment, stress drop, and energy release. Journal of Geophysical
Research 86 (B3), 1785-1793.

Schultz, R., 1999. Understanding the process of faulting: selected challenges and opportunities at the edge of the 21st century. Journal
of Structural Geology 21 (8-9), 985-993.

Weertman, J., 1964. Continuum distribution of dislocations on faults with finite friction. Bulletin of the Seismological Society of
America 54 (4), 1035-1058.



